
Package: bakR (via r-universe)
October 22, 2024

Title Analyze and Compare Nucleotide Recoding RNA Sequencing Datasets

Version 1.0.1

Description Several implementations of a novel Bayesian hierarchical
statistical model of nucleotide recoding RNA-seq experiments
(NR-seq; TimeLapse-seq, SLAM-seq, TUC-seq, etc.) for analyzing
and comparing NR-seq datasets (see 'Vock and Simon' (2023)
<doi:10.1261/rna.079451.122>). NR-seq is a powerful extension
of RNA-seq that provides information about the kinetics of RNA
metabolism (e.g., RNA degradation rate constants), which is
notably lacking in standard RNA-seq data. The statistical model
makes maximal use of these high-throughput datasets by sharing
information across transcripts to significantly improve
uncertainty quantification and increase statistical power.
'bakR' includes a maximally efficient implementation of this
model for conservative initial investigations of datasets.
'bakR' also provides more highly powered implementations using
the probabilistic programming language 'Stan' to sample from
the full posterior distribution. 'bakR' performs multiple-test
adjusted statistical inference with the output of these model
implementations to help biologists separate signal from
background. Methods to automatically visualize key results and
detect batch effects are also provided.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Biarch true

Depends R (>= 3.5.0)

Imports purrr, methods, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1),
rstan (>= 2.26.0), rstantools (>= 2.1.1), dplyr, tidyr, stats,
magrittr, Hmisc, ggplot2, data.table

1

https://doi.org/10.1261/rna.079451.122

2 Contents

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
RcppParallel (>= 5.0.1), rstan (>= 2.26.0), StanHeaders (>=
2.26.0)

SystemRequirements GNU make C++17

Suggests rmarkdown, knitr, DESeq2, pheatmap, Ckmeans.1d.dp, corrplot

VignetteBuilder knitr

URL https://simonlabcode.github.io/bakR/

BugReports https://github.com/simonlabcode/bakR/issues/

NeedsCompilation yes

Repository https://simonlabcode.r-universe.dev

RemoteUrl https://github.com/simonlabcode/bakr

RemoteRef HEAD

RemoteSha c248b3a642b8fda26384e509262c2dcf035b5ece

Contents
bakR-package . 3
avg_and_regularize . 3
bakRData . 6
bakRFit . 7
bakRFnData . 11
cBprocess . 11
cB_small . 14
CorrectDropout . 15
DissectMechanism . 17
fast_analysis . 18
FnPCA . 24
FnPCA2 . 25
fns . 26
fn_process . 27
GSprocessing . 29
GS_table . 30
Heatmap_kdeg . 31
metadf . 32
new_bakRData . 32
new_bakRFnData . 33
NSSHeat . 33
plotMA . 34
plotVolcano . 35
QC_checks . 36
QuantifyDropout . 37
reliableFeatures . 38
Simulate_bakRData . 40
Simulate_relative_bakRData . 44

https://simonlabcode.github.io/bakR/
https://github.com/simonlabcode/bakR/issues/

bakR-package 3

TL_stan . 48
validate_bakRData . 51
validate_bakRFnData . 52
VisualizeDropout . 52

Index 54

bakR-package The ’bakR’ package.

Description

A DESCRIPTION OF THE PACKAGE

References

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2.
https://mc-stan.org

avg_and_regularize Efficiently average replicates of nucleotide recoding data and regular-
ize

Description

avg_and_regularize pools and regularizes replicate estimates of kinetic parameters. There are
two key steps in this downstream analysis. 1st, the uncertainty for each feature is used to fit a lin-
ear ln(uncertainty) vs. log10(read depth) trend, and uncertainties for individual features are shrunk
towards the regression line. The uncertainty for each feature is a combination of the Fisher Infor-
mation asymptotic uncertainty as well as the amount of variability seen between estimates. Regu-
larization of uncertainty estimates is performed using the analytic results of a Normal distribution
likelihood with known mean and unknown variance and conjugate priors. The prior parameters are
estimated from the regression and amount of variability about the regression line. The strength of
regularization can be tuned by adjusting the prior_weight parameter, with larger numbers yield-
ing stronger shrinkage towards the regression line. The 2nd step is to regularize the average kdeg
estimates. This is done using the analytic results of a Normal distribution likelihood model with un-
known mean and known variance and conjugate priors. The prior parameters are estimated from the
population wide kdeg distribution (using its mean and standard deviation as the mean and standard
deviation of the normal prior). In the 1st step, the known mean is assumed to be the average kdeg,
averaged across replicates and weighted by the number of reads mapping to the feature in each repli-
cate. In the 2nd step, the known variance is assumed to be that obtained following regularization of
the uncertainty estimates.

4 avg_and_regularize

Usage

avg_and_regularize(
Mut_data_est,
nreps,
sample_lookup,
feature_lookup,
nbin = NULL,
NSS = FALSE,
Chase = FALSE,
BDA_model = FALSE,
null_cutoff = 0,
Mutrates = NULL,
ztest = FALSE

)

Arguments

Mut_data_est Dataframe with fraction new estimation information. Required columns are:

• fnum; numerical ID of feature
• reps; numerical ID of replicate
• mut; numerical ID of experimental condition (Exp_ID)
• logit_fn_rep; logit(fn) estimate
• kd_rep_est; kdeg estimate
• log_kd_rep_est; log(kdeg) estimate
• logit_fn_se; logit(fn) estimate uncertainty
• log_kd_se; log(kdeg) estimate uncertainty

nreps Vector of number of replicates in each experimental condition

sample_lookup Dictionary mapping sample names to various experimental details

feature_lookup Dictionary mapping feature IDs to original feature names

nbin Number of bins for mean-variance relationship estimation. If NULL, max of 10
or (number of logit(fn) estimates)/100 is used

NSS Logical; if TRUE, logit(fn)s are compared rather than log(kdeg) so as to avoid
steady-state assumption.

Chase Logical; Set to TRUE if analyzing a pulse-chase experiment. If TRUE, kdeg =
-ln(fn)/tl where fn is the fraction of reads that are s4U (more properly referred
to as the fraction old in the context of a pulse-chase experiment)

BDA_model Logical; if TRUE, variance is regularized with scaled inverse chi-squared model.
Otherwise a log-normal model is used.

null_cutoff bakR will test the null hypothesis of |effect size| < |null_cutoff|

Mutrates List containing new and old mutation rate estimates

ztest TRUE; if TRUE, then a z-test is used for p-value calculation rather than the more
conservative moderated t-test.

avg_and_regularize 5

Details

Effect sizes (changes in kdeg) are obtained as the difference in log(kdeg) means between the ref-
erence and experimental sample(s), and the log(kdeg)s are assumed to be independent so that the
variance of the effect size is the sum of the log(kdeg) variances. P-values assessing the significance
of the effect size are obtained using a moderated t-test with number of degrees of freedom deter-
mined from the uncertainty regression hyperparameters and are adjusted for multiple testing using
the Benjamini- Hochberg procedure to control false discovery rates (FDRs).

In some cases, the assumed ODE model of RNA metabolism will not accurately model the dynamics
of a biological system being analyzed. In these cases, it is best to compare logit(fraction new)s
directly rather than converting fraction new to log(kdeg). This analysis strategy is implemented
when NSS is set to TRUE. Comparing logit(fraction new) is only valid If a single metabolic label
time has been used for all samples. For example, if a label time of 1 hour was used for NR-seq data
from WT cells and a 2 hour label time was used in KO cells, this comparison is no longer valid as
differences in logit(fraction new) could stem from differences in kinetics or label times.

Value

List with dataframes providing information about replicate-specific and pooled analysis results. The
output includes:

• Fn_Estimates; dataframe with estimates for the fraction new and fraction new uncertainty for
each feature in each replicate. The columns of this dataframe are:

– Feature_ID; Numerical ID of feature
– Exp_ID; Numerical ID for experimental condition (Exp_ID from metadf)
– Replicate; Numerical ID for replicate
– logit_fn; logit(fraction new) estimate, unregularized
– logit_fn_se; logit(fraction new) uncertainty, unregularized and obtained from Fisher In-

formation
– nreads; Number of reads mapping to the feature in the sample for which the estimates

were obtained
– log_kdeg; log of degradation rate constant (kdeg) estimate, unregularized
– kdeg; degradation rate constant (kdeg) estimate
– log_kd_se; log(kdeg) uncertainty, unregularized and obtained from Fisher Information
– sample; Sample name
– XF; Original feature name

• Regularized_ests; dataframe with average fraction new and kdeg estimates, averaged across
the replicates and regularized using priors informed by the entire dataset. The columns of this
dataframe are:

– Feature_ID; Numerical ID of feature
– Exp_ID; Numerical ID for experimental condition (Exp_ID from metadf)
– avg_log_kdeg; Weighted average of log(kdeg) from each replicate, weighted by sample

and feature-specific read depth
– sd_log_kdeg; Standard deviation of the log(kdeg) estimates
– nreads; Total number of reads mapping to the feature in that condition
– sdp; Prior standard deviation for fraction new estimate regularization

6 bakRData

– theta_o; Prior mean for fraction new estimate regularization
– sd_post; Posterior uncertainty
– log_kdeg_post; Posterior mean for log(kdeg) estimate
– kdeg; exp(log_kdeg_post)
– kdeg_sd; kdeg uncertainty
– XF; Original feature name

• Effects_df; dataframe with estimates of the effect size (change in logit(fn)) comparing each
experimental condition to the reference sample for each feature. This dataframe also includes
p-values obtained from a moderated t-test. The columns of this dataframe are:

– Feature_ID; Numerical ID of feature
– Exp_ID; Numerical ID for experimental condition (Exp_ID from metadf)
– L2FC(kdeg); Log2 fold change (L2FC) kdeg estimate or change in logit(fn) if NSS TRUE
– effect; LFC(kdeg)
– se; Uncertainty in L2FC_kdeg
– pval; P-value obtained using effect_size, se, and a z-test
– padj; pval adjusted for multiple testing using Benjamini-Hochberg procedure
– XF; Original feature name

• Mut_rates; list of two elements. The 1st element is a dataframe of s4U induced mutation rate
estimates, where the mut column represents the experimental ID and the rep column represents
the replicate ID. The 2nd element is the single background mutation rate estimate used

• Hyper_Parameters; vector of two elements, named a and b. These are the hyperparameters es-
timated from the uncertainties for each feature, and represent the two parameters of a Scaled
Inverse Chi-Square distribution. Importantly, a is the number of additional degrees of free-
dom provided by the sharing of uncertainty information across the dataset, to be used in the
moderated t-test.

• Mean_Variance_lms; linear model objects obtained from the uncertainty vs. read count re-
gression model. One model is run for each Exp_ID

bakRData bakR Data object helper function for users

Description

This function creates an object of class bakRData

Usage

bakRData(cB, metadf)

Arguments

cB Dataframe with columns corresponding to feature ID, number of Ts, number of
mutations, sample ID, and number of identical observations

metadf Dataframe detailing s4U label time and experimental ID of each sample

bakRFit 7

Value

A bakRData object. This has two components: a data frame describing experimental details (metadf)
and a data frame containing the NR-seq data (cB).

Examples

Load cB
data("cB_small")

Load metadf
data("metadf")

Create bakRData object
bakRData <- bakRData(cB_small, metadf)

bakRFit Estimating kinetic parameters from nucleotide recoding RNA-seq data

Description

bakRFit analyzes nucleotide recoding RNA-seq data to estimate kinetic parameters relating to RNA
stability and changes in RNA stability induced by experimental perturbations. Several statistical
models of varying efficiency and accuracy can be used to fit data.

Usage

bakRFit(
obj,
StanFit = FALSE,
HybridFit = FALSE,
high_p = 0.2,
totcut = 50,
totcut_all = 10,
Ucut = 0.25,
AvgU = 4,
FastRerun = FALSE,
FOI = c(),
concat = TRUE,
StanRateEst = FALSE,
RateEst_size = 30,
low_reads = 100,
high_reads = 5e+05,
chains = 1,
NSS = FALSE,
Chase = FALSE,
BDA_model = FALSE,

8 bakRFit

multi_pold = FALSE,
Long = FALSE,
kmeans = FALSE,
ztest = FALSE,
Fisher = TRUE,
...

)

Arguments

obj bakRData object produced by bakRData, bakRFit object produced by bakRFit
bakRFnData object produced by bakRFnData, or bakRFnFit object produced by
bakRFit.

StanFit Logical; if TRUE, then the MCMC implementation is run. Will only be used if
obj is a bakRFit object

HybridFit Logical; if TRUE, then the Hybrid implementation is run. Will only be used if
obj is a bakRFit object

high_p Numeric; Any features with a mutation rate (number of mutations / number of
Ts in reads) higher than this in any -s4U control samples (i.e., samples that were
not treated with s4U) are filtered out

totcut Numeric; Any features with less than this number of sequencing reads in any
replicate of all experimental conditions are filtered out

totcut_all Numeric; Any features with less than this number of sequencing reads in any
sample are filtered out

Ucut Numeric; All features must have a fraction of reads with 2 or less Us less than
this cutoff in all samples

AvgU Numeric; All features must have an average number of Us greater than this
cutoff in all samples

FastRerun Logical; only matters if a bakRFit object is passed to bakRFit. If TRUE, then
the Stan-free model implemented in fast_analysis is rerun on data, foregoing
fitting of either of the ’Stan’ models.

FOI Features of interest; character vector containing names of features to analyze

concat Logical; If TRUE, FOI is concatenated with output of reliableFeatures

StanRateEst Logical; if TRUE, a simple ’Stan’ model is used to estimate mutation rates for
fast_analysis; this may add a couple minutes to the runtime of the analysis.

RateEst_size Numeric; if StanRateEst is TRUE, then data from RateEst_size genes are used
for mutation rate estimation. This can be as low as 1 and should be kept low to
ensure maximum efficiency

low_reads Numeric; if StanRateEst is TRUE, then only features with more than low_reads
reads in all samples will be used for mutation rate estimation

high_reads Numeric; if StanRateEst is TRUE, then only features with less than high_read
reads in all samples will be used for mutation rate estimation. A high read count
cutoff is as important as a low read count cutoff in this case because you don’t
want the fraction labeled of chosen features to be extreme (e.g., close to 0 or 1),
and high read count features are likely low fraction new features.

bakRFit 9

chains Number of Markov chains to sample from. 1 should suffice since these are
validated models. Running more chains is generally preferable, but memory
constraints can make this unfeasible.

NSS Logical; if TRUE, logit(fn)s are directly compared to avoid assuming steady-
state

Chase Logical; Set to TRUE if analyzing a pulse-chase experiment. If TRUE, kdeg =
-ln(fn)/tl where fn is the fraction of reads that are s4U (more properly referred
to as the fraction old in the context of a pulse-chase experiment).

BDA_model Logical; if TRUE, variance is regularized with scaled inverse chi-squared model.
Otherwise a log-normal model is used.

multi_pold Logical; if TRUE, pold is estimated for each sample rather than use a global
pold estimate.

Long Logical; if TRUE, long read optimized fraction new estimation strategy is used.

kmeans Logical; if TRUE, kmeans clustering on read-specific mutation rates is used to
estimate pnews and pold.

ztest Logical; if TRUE and the MLE implementation is being used, then a z-test will
be used for p-value calculation rather than the more conservative moderated t-
test.

Fisher Logical; if TRUE, Fisher information is used to estimate logit(fn) uncertainty.
Else, a less conservative binomial model is used, which can be preferable in
instances where the Fisher information strategy often drastically overestimates
uncertainty (i.e., low coverage or low pnew).

... Arguments passed to either fast_analysis (if a bakRData object) or TL_Stan
and Hybrid_fit (if a bakRFit object)

Details

If bakRFit is run on a bakRData object, cBprocess and then fast_analysis will always be
called. The former will generate the processed data that can be passed to the model fitting functions
(fast_analysis and TL_Stan). The call to fast_analysis will generate a list of dataframes con-
taining information regarding the fast_analysis fit. fast_analysis is always called because its
output is required for both Hybrid_fit and TL_Stan.

If bakRFit is run on a bakRFit object, cBprocess will not be called again, as the output of
cBprocess will already be contained in the bakRFit object. Similarly, fast_analysis will not
be called again unless bakRFit is rerun on the bakRData object. or if FastRerun is set to TRUE.
If you want to generate model fits using different parameters for cBprocess, you will have to rerun
bakRFit on the bakRData object.

If bakRFit is run on a bakRFnData object, fn_process and then avg_and_regularize will always
be called. The former will generate the processed data that can be passed to the model fitting
functions (avg_and_regularize and TL_Stan, the latter only with HybridFit = TRUE).

If bakRFit is run on a bakRFnFit object. fn_process will not be called again, as the output of
fn_process will already be contained in the bakRFnFit object. Similary, avg_and_regularize
will not be called unless bakRFit is rerun on the bakRData object, or if FastRerun is set to TRUE.
If you want to generate model fits using different parameters for fn_process, you will have to rerun
bakRFit on the bakRData object.

10 bakRFit

See the documentation for the individual fitting functions for details regarding how they analyze
nucleotide recoding data. What follows is a brief overview of how each works

fast_analysis (referred to as the MLE implementation in the bakR paper) either estimates mu-
tation rates from + and (if available) - s4U samples or uses mutation rate estimates provided by
the user to perform maximum likelihood estimation (MLE) of the fraction of RNA that is labeled
for each replicate of nucleotide recoding data provided. Uncertainties for each replicate’s estimate
are approximated using asymptotic results involving the Fisher Information and assuming known
mutation rates. Replicate data is pooled using an approximation to hierarchical modeling that relies
on analytic solutions to simple Bayesian models. Linear regression is used to estimate the relation-
ship between read depths and replicate variability for uncertainty estimation regularization, again
performed using analytic solutions to Bayesian models.

TL_Stan with Hybrid_Fit set to TRUE (referred to as the Hybrid implementation in the bakR paper)
takes as input estimates of the logit(fraction new) and uncertainty provided by fast_analysis. It
then uses ’Stan’ on the backend to implement a hierarchical model that pools data across repli-
cates and the dataset to estimate effect sizes (L2FC(kdeg)) and uncertainties. Replicate variability
information is pooled across each experimental condition to regularize variance estimates using a
hierarchical linear regression model.

The default behavior of TL_Stan (referred to as the MCMC implementation in the bakR paper) is
to use ’Stan’ on the back end to implement a U-content exposure adjusted Poisson mixture model
to estimate fraction news from the mutational data. Partial pooling of replicate variability estimates
is performed as with the Hybrid implementation.

Value

bakRFit object with results from statistical modeling and data processing. Objects possibly included
are:

• Fast_Fit; Always will be present. Output of fast_analysis

• Hybrid_Fit; Only present if HybridFit = TRUE. Output of TL_stan

• Stan_Fit; Only present if StanFit = TRUE. Output of TL_stan

• Data_lists; Always will be present. Output of cBprocess with Fast and Stan == TRUE

Examples

Simulate data for 1000 genes, 2 replicates, 2 conditions
simdata <- Simulate_bakRData(1000, nreps = 2)

You always must fit fast implementation before any others
Fit <- bakRFit(simdata$bakRData)

bakRFnData 11

bakRFnData bakRFnData object helper function for users

Description

This function creates an object of class bakRFnData

Usage

bakRFnData(fns, metadf)

Arguments

fns Dataframe with columns corresponding to sample names (sample), feature IDs
(XF), fraction new estimates (fn), and number of sequencing reads (nreads). fns
can optionally contain a column of fraction new estimate uncertainties (se).

metadf Dataframe detailing s4U label time and experimental ID of each sample. Iden-
tical to bakRData input

Value

A bakRFnData object. This has two components: a data frame describing experimental details
(metadf) and a data frame containing the fraction new estimates (fns).

Examples

NEED TO ADD EXAMPLE DATA
Load cB
data("cB_small")

Load metadf
data("metadf")

Create bakRData object
bakRData <- bakRData(cB_small, metadf)

cBprocess Curate data in bakRData object for statistical modeling

Description

cBprocess creates the data structures necessary to analyze nucleotide recoding RNA-seq data with
any of the statistical model implementations in bakRFit. The input to cBprocess must be an object
of class bakRData.

12 cBprocess

Usage

cBprocess(
obj,
high_p = 0.2,
totcut = 50,
totcut_all = 10,
Ucut = 0.25,
AvgU = 4,
Stan = TRUE,
Fast = TRUE,
FOI = c(),
concat = TRUE

)

Arguments

obj An object of class bakRData

high_p Numeric; Any transcripts with a mutation rate (number of mutations / number
of Ts in reads) higher than this in any no s4U control samples are filtered out

totcut Numeric; Any transcripts with less than this number of sequencing reads in any
replicate of all experimental conditions are filtered out

totcut_all Numeric; Any transcripts with less than this number of sequencing reads in any
sample are filtered out

Ucut Numeric; All transcripts must have a fraction of reads with 2 or less Us less than
this cutoff in all samples

AvgU Numeric; All transcripts must have an average number of Us greater than this
cutoff in all samples

Stan Boolean; if TRUE, then data_list that can be passed to ’Stan’ is curated

Fast Boolean; if TRUE, then dataframe that can be passed to fast_analysis() is curated

FOI Features of interest; character vector containing names of features to analyze. If
FOI is non-null and concat is TRUE, then all minimally reliable FOIs will be
combined with reliable features passing all set filters (high_p, totcut, totcut_all,
Ucut, and AvgU). If concat is FALSE, only the minimally reliable FOIs will be
kept. A minimally reliable FOI is one that passes filtering with minimally strin-
gent parameters.

concat Boolean; If TRUE, FOI is concatenated with output of reliableFeatures

Details

The 1st step executed by cBprocess is to find the names of features which are deemed "reliable".
A reliable feature is one with sufficient read coverage in every single sample (i.e., > totcut_all reads
in all samples), sufficient read coverage in at all replicates of at least one experimental condition
(i.e., > totcut reads in all replicates for one or more experimental conditions) and limited mutation
content in all -s4U control samples (i.e., < high_p mutation rate in all samples lacking s4U feeds).
In addition, if analyzing short read sequencing data, two additional definitons of reliable features
become pertinent: the fraction of reads that can have 2 or less Us in each sample (Ucut) and the

cBprocess 13

minimum average number of Us for a feature’s reads in each sample (AvgU). This is done with a
call to reliableFeatures.

The 2nd step is to extract only reliableFeatures from the cB dataframe in the bakRData object.
During this process, a numerical ID is given to each reliableFeature, with the numerical ID corre-
sponding to their order when arranged using dplyr::arrange.

The 3rd step is to prepare a dataframe where each row corresponds to a set of n identical reads
(that is they come from the same sample and have the same number of mutations and Us). Part
of this process involves assigning an arbitrary numerical ID to each replicate in each experimental
condition. The numerical ID will correspond to the order the sample appears in metadf. The
outcome of this step is multiple dataframes with variable information content. These include a
dataframe with information about read counts in each sample, one which logs the U-contents of
each feature, one which is compatible with fast_analysis and thus groups reads by their number
of mutations as well as their number of Us, and one which is compatible with TL_stan with StanFit
== TRUE and thus groups ready by only their number of mutations. At the end of this step, two
other smaller data structures are created, one which is an average count matrix (a count matrix
where the ith row and jth column corresponds to the average number of reads mappin to feature i in
experimental condition j, averaged over all replicates) and the other which is a sample lookup table
that relates the numerical experimental and replicate IDs to the original sample name.

Value

returns list of objects that can be passed to TL_stan and/or fast_analysis. Those objects are:

• Stan_data; list that can be passed to TL_stan with Hybrid_Fit = FALSE. Consists of metadata
as well as data that ’Stan’ will analyze. Data to be analyzed consists of equal length vectors.
The contents of Stan_data are:

– NE; Number of datapoints for ’Stan’ to analyze (NE = Number of Elements)
– NF; Number of features in dataset
– TP; Numerical indicator of s4U feed (0 = no s4U feed, 1 = s4U fed)
– FE; Numerical indicator of feature
– num_mut; Number of U-to-C mutations observed in a particular set of reads
– MT; Numerical indicator of experimental condition (Exp_ID from metadf)
– nMT; Number of experimental conditions
– R; Numerical indicator of replicate
– nrep; Number of replicates (analysis requires same number of replicates of all conditions)
– num_obs; Number of reads with identical data (number of mutations, feature of origin,

and sample of origin)
– tl; Vector of label times for each experimental condition
– U_cont; Log2-fold-difference in U-content for a feature in a sample relative to average

U-content for that sample
– Avg_Reads; Standardized log10(average read counts) for a particular feature in a partic-

ular condition, averaged over replicates
– Avg_Reads_natural; Unstandardized average read counts for a particular feature in a par-

ticular condition, averaged over replicates. Used for plotMA
– sdf; Dataframe that maps numerical feature ID to original feature name. Also has read

depth information

14 cB_small

– sample_lookup; Lookup table relating MT and R to the original sample name

• Fast_df; A data frame that can be passed to fast_analysis. The contents of Fast_df are:

– sample; Original sample name
– XF; Original feature name
– TC; Number of T to C mutations
– nT; Number of Ts in read
– n; Number of identical observations
– fnum; Numerical indicator of feature
– type; Numerical indicator of s4U feed (0 = no s4U feed, 1 = s4U fed)
– mut; Numerical indicator of experimental condition (Exp_ID from metadf)
– reps; Numerical indicator of replicate

• Count_Matrix; A matrix with read count information. Each column represents a sample and
each row represents a feature. Each entry is the raw number of read counts mapping to a
particular feature in a particular sample. Column names are the corresponding sample names
and row names are the corresponding feature names.

Examples

Load cB
data("cB_small")

Load metadf
data("metadf")

Create bakRData
bakRData <- bakRData(cB_small, metadf)

Preprocess data
data_for_bakR <- cBprocess(obj = bakRData)

cB_small Example cB data frame

Description

Subset of a cB file from the DCP2 dataset published in Luo et al. 2020. The original file is large
(69 MB), so the example cB file has been downsampled and contains only 10 genes (rather than
25012). The columns are described in the Getting_Started vignette.

Usage

data(cB_small)

CorrectDropout 15

Format

A dataframe with 5788 rows and 5 variables; each row corresponds to a group of sequencing reads

sample Sample name

TC Number of T-to-C mutations

nT Number of Ts

XF Name of feature to which the group of reads map; usually a gene name

n Number of identical sequencing reads

References

Luo et al. (2020) Biochemistry. 59(42), 4121-4142

Examples

data(cB_small)
data(metadf)
bakRdat <- bakRData(cB_small, metadf)

CorrectDropout Correcting for metabolic labeling induced RNA dropout

Description

Dropout is the name given to a phenomenon originally identified by our lab and further detailed in
two independent publications (Zimmer et al. (2023), and Berg et al. (2023)). Dropout is the under-
representation of reads from RNA containing metabolic label (4-thiouridine or 6-thioguanidine most
commonly). Loss of 4-thiouridine (s4U) containing RNA on plastic surfaces and RT dropoff caused
by modifications on s4U introduced by recoding chemistry have been attributed as the likely causes
of this phenomenon. While protocols can be altered in ways to drastically reduce this source of
dropout, you may still have datasets that you want to analyze with bakR collected with suboptimal
handling. That is where CorrectDropout comes in.

Usage

CorrectDropout(
obj,
scale_init = 1.05,
pdo_init = 0.3,
recalc_uncertainty = FALSE,
...

)

16 CorrectDropout

Arguments

obj bakRFit object

scale_init Numeric; initial estimate for -s4U/+s4U scale factor. This is the factor difference
in RPM normalized read counts for completely unlabeled transcripts (i.e., highly
stable transcript) between the +s4U and -s4U samples.

pdo_init Numeric; initial estimtae for the dropout rate. This is the probability that an s4U
labeled RNA molecule is lost during library prepartion.

recalc_uncertainty

Logical; if TRUE, then fraction new uncertainty is recalculated using adjusted fn
and a simple binomial model of estimate uncertainty. This will provide a slight
underestimate of the fn uncertainty, but will be far less biased for low coverage
features, or for samples with low pnews.

... Additional (optional) parameters to be passed to stats::nls()

Details

CorrectDropout estimates the percentage of 4-thiouridine containing RNA that was lost during
library preparation (pdo). It then uses this estimate of pdo to correct fraction new estimates and
read counts. Both corrections are analytically derived from a rigorous generative model of NR-
seq data. Importantly, the read count correction preserves the total library size to avoid artificially
inflating read counts.

Value

A bakRFit or bakRFnFit object (same type as was passed in). Fraction new estimates and read
counts in Fast_Fit$Fn_Estimates and (in the case of a bakRFnFit input) Data_lists$Fn_Estare
dropout corrected. A count matrix with corrected read counts (Data_lists$Count_Matrix_corrected)
is also output, along with a data frame with information about the dropout rate estimated for each
sample (Data_lists$Dropout_df).

Examples

Simulate data for 500 genes and 2 replicates with 40% dropout
sim <- Simulate_relative_bakRData(500, 100000, nreps = 2, p_do = 0.4)

Fit data with fast implementation
Fit <- bakRFit(sim$bakRData)

Correct for dropout
Fit <- CorrectDropout(Fit)

DissectMechanism 17

DissectMechanism Construct heatmap for non-steady state (NSS) analysis with improved
mechanism score

Description

This uses the output of bakR and a differential expression analysis software to construct a dataframe
that can be passed to pheatmap::pheatmap(). This heatmap will display the result of a steady-state
quasi-independent analysis of NR-seq data.

Usage

DissectMechanism(
bakRFit,
DE_df,
bakRModel = c("MLE", "Hybrid", "MCMC"),
DE_cutoff = 0.05,
bakR_cutoff = 0.3,
Exp_ID = 2,
sims = 1e+07

)

Arguments

bakRFit bakRFit object

DE_df dataframe of required format with differential expression analysis results. See
Further-Analyses vignette for details on what this dataframe should look like

bakRModel Model fit from which bakR implementation should be used? Options are MLE,
Hybrid, or MCMC

DE_cutoff padj cutoff for calling a gene differentially expressed

bakR_cutoff padj cutoff for calling a fraction new significantly changed. As discussed in the
mechanistic dissection vignette, it is best to keep this more conservative (higher
padj) than is typical. Thus, default is 0.3 rather than the more standard (though
admittedly arbitrary) 0.05.

Exp_ID Exp_ID of experimental sample whose comparison to the reference sample you
want to use. Only one reference vs. experimental sample comparison can be
used at a time

sims Number of simulation draws from null distribution for mechanism p value cal-
culation

Details

Unlike NSSHeat, DissectMechanism uses a mechanism scoring function that is not discontinuous
as the "degradation driven" vs. "synthesis driven" boundary. Instead, the score approaches 0 as the
function approaches the boundary from either side.

18 fast_analysis

In addition, DissectMechanism now defines a null model for the purpose of p value calculation
using the mechanism score. Under the null hypothesis, the mechanism score is the product of two
normal distributions with unit variance, one which has a non-zero mean. Simulation is used to
estimate the integral of this distribution, and the number of draws (which determines the precision
of the p value estimate) is determined by the sims parameter.

DissectMechanism also provides "meta-analysis p values", which can be interpreted as the p-value
that a particular RNA feature is observing differential expression or differential kinetics (or both).
This meta_pval is estimated using Fisher’s method for meta analysis.

Value

returns list of data frames: heatmap_df and NSS_stats. The heatmap_dfdata frame can be passed
to pheatmap::pheatmap(). The NSS_stats data frame contains all of the information passed to
NSS_stats as well as the raw mechanism scores. It also has p values calculated from the mech-
anism z scores.

Examples

Simulate small dataset
sim <- Simulate_bakRData(100, nreps = 2)

Analyze data with bakRFit
Fit <- bakRFit(sim$bakRData)

Number of features that made it past filtering
NF <- nrow(Fit$Fast_Fit$Effects_df)

Simulate mock differential expression data frame
DE_df <- data.frame(XF = as.character(1:NF),

L2FC_RNA = stats::rnorm(NF, 0, 2))

DE_df$DE_score <- DE_df$L2FC_RNA/0.5
DE_df$DE_se <- 0.5

DE_df$DE_pval <- 2*stats::dnorm(-abs(DE_df$DE_score))
DE_df$DE_padj <- 2*stats::p.adjust(DE_df$DE_pval, method = "BH")

perform NSS analysis
NSS_analysis <- DissectMechanism(bakRFit = Fit,

DE_df = DE_df,
bakRModel = "MLE")

fast_analysis Efficiently analyze nucleotide recoding data

fast_analysis 19

Description

fast_analysis analyzes nucleotide recoding data with maximum likelihood estimation imple-
mented by stats::optim combined with analytic solutions to simple Bayesian models to perform
approximate partial pooling. Output includes kinetic parameter estimates in each replicate, ki-
netic parameter estimates averaged across replicates, and log-2 fold changes in the degradation rate
constant (L2FC(kdeg)). Averaging takes into account uncertainties estimated using the Fisher In-
formation and estimates are regularized using analytic solutions of fully Bayesian models. The
result is that kdegs are shrunk towards population means and that uncertainties are shrunk towards
a mean-variance trend estimated as part of the analysis.

Usage

fast_analysis(
df,
pnew = NULL,
pold = NULL,
no_ctl = FALSE,
read_cut = 50,
features_cut = 50,
nbin = NULL,
prior_weight = 2,
MLE = TRUE,
ztest = FALSE,
lower = -7,
upper = 7,
se_max = 2.5,
mut_reg = 0.1,
p_mean = 0,
p_sd = 1,
StanRate = FALSE,
Stan_data = NULL,
null_cutoff = 0,
NSS = FALSE,
Chase = FALSE,
BDA_model = FALSE,
multi_pold = FALSE,
Long = FALSE,
kmeans = FALSE,
Fisher = TRUE

)

Arguments

df Dataframe in form provided by cB_to_Fast

pnew Labeled read mutation rate; default of 0 means that model estimates rate from
s4U fed data. If pnew is provided by user, must be a vector of length == number
of s4U fed samples. The 1st element corresponds to the s4U induced mutation

20 fast_analysis

rate estimate for the 1st replicate of the 1st experimental condition; the 2nd ele-
ment corresponds to the s4U induced mutation rate estimate for the 2nd replicate
of the 1st experimental condition, etc.

pold Unlabeled read mutation rate; default of 0 means that model estimates rate from
no-s4U fed data

no_ctl Logical; if TRUE, then -s4U control is not used for background mutation rate
estimation

read_cut Minimum number of reads for a given feature-sample combo to be used for mut
rate estimates

features_cut Number of features to estimate sample specific mutation rate with

nbin Number of bins for mean-variance relationship estimation. If NULL, max of 10
or (number of logit(fn) estimates)/100 is used

prior_weight Determines extent to which logit(fn) variance is regularized to the mean-variance
regression line

MLE Logical; if TRUE then replicate logit(fn) is estimated using maximum likeli-
hood; if FALSE more conservative Bayesian hypothesis testing is used

ztest TRUE; if TRUE, then a z-test is used for p-value calculation rather than the more
conservative moderated t-test.

lower Lower bound for MLE with L-BFGS-B algorithm

upper Upper bound for MLE with L-BFGS-B algorithm

se_max Uncertainty given to those transcripts with estimates at the upper or lower bound
sets. This prevents downstream errors due to abnormally high standard errors
due to transcripts with extreme kinetics

mut_reg If MLE has instabilities, empirical mut rate will be used to estimate fn, multi-
plying pnew by 1+mut_reg and pold by 1-mut_reg to regularize fn

p_mean Mean of normal distribution used as prior penalty in MLE of logit(fn)

p_sd Standard deviation of normal distribution used as prior penalty in MLE of logit(fn)

StanRate Logical; if TRUE, a simple ’Stan’ model is used to estimate mutation rates for
fast_analysis; this may add a couple minutes to the runtime of the analysis.

Stan_data List; if StanRate is TRUE, then this is the data passed to the ’Stan’ model to
estimate mutation rates. If using the bakRFit wrapper of fast_analysis, then
this is created automatically.

null_cutoff bakR will test the null hypothesis of |effect size| < |null_cutoff|

NSS Logical; if TRUE, logit(fn)s are compared rather than log(kdeg) so as to avoid
steady-state assumption.

Chase Logical; Set to TRUE if analyzing a pulse-chase experiment. If TRUE, kdeg =
-ln(fn)/tl where fn is the fraction of reads that are s4U (more properly referred
to as the fraction old in the context of a pulse-chase experiment)

BDA_model Logical; if TRUE, variance is regularized with scaled inverse chi-squared model.
Otherwise a log-normal model is used.

multi_pold Logical; if TRUE, pold is estimated for each sample rather than use a global
pold estimate.

fast_analysis 21

Long Logical; if TRUE, long read optimized fraction new estimation strategy is used.

kmeans Logical; if TRUE, kmeans clustering on read-specific mutation rates is used to
estimate pnews and pold.

Fisher Logical; if TRUE, Fisher information is used to estimate logit(fn) uncertainty.
Else, a less conservative binomial model is used, which can be preferable in
instances where the Fisher information strategy often drastically overestimates
uncertainty (i.e., low coverage or low pnew).

Details

Unless the user supplies estimates for pnew and pold, the first step of fast_analysis is to estimate
the background (pold) and metabolic label (will refer to as s4U for simplicity, though bakR is
compatible with other metabolic labels such as s6G) induced (pnew) mutation rates. Several pnew
and pold estimation strategies are implemented in bakR. For pnew estimation, the two strategies are
likelihood maximization of a binomial mixture model (default) and sampling from the full posterior
of a U-content adjusted Poisson mixture model with HMC (when StanRateEst is set to TRUE in
bakRFit).

The default pnew estimation strategy involves combining the mutational data for all features into
sample-wide mutational data vectors (# of T-to-C conversions, # of Ts, and # of such reads vectors).
These data vectors are then downsampled (to prevent float overflow) and used to maximize the
likelihood of a two-component binomial mixture model. The two components correspond to reads
from old and new RNA, and the three estimated paramters are the fraction of all reads that are new
(nuisance parameter in this case), and the old and new read mutation rates.

The alternative strategy involves running a fully Bayesian implementation of a similar mixture
model using Stan, a probalistic programming language that bakR makes use of in several functions.
This strategy can yield more accurate mutation rate estimates when the label times are much shorter
or longer than the average half-lives of the sequenced RNA (i.e., the fraction news are mostly close
to 0 or 1, respectively). To improve the efficiency of this approach, only a small subset of RNA
features are analyzed, the number of which is set by the RateEst_size parameter in bakRFit.
By default, this number is set to 30, which on the average NR-seq dataset yields a several minute
runtime for mutation rate estimation.

Estimation of pold can be performed with three strategies: the same two strategies discussed for
pnew estimation, and a third strategy that relies on the presence of -s4U control data. If -s4U
control data is present, the default pold estimation strategy is to use the average mutation rate in
reads from all -s4U control datasets as the global pold estimate. Thus, a single pold estimate is used
for all samples. The likelihood maximization strategy can be used by setting no_ctl to TRUE,
and this strategy becomes the default strategy if no -s4U data is present. In addition, as of version
1.0.0 of bakR (released late June of 2023), users can decide to estimate pold for each +s4U sample
independently by setting multi_pold to TRUE. In this case, independent -s4U datasets can no
longer be used for mutation rate estimation purposes, and thus the strategies for pold estimation are
identical to the set of pnew estimation strategies.

Once mutation rates are estimated, fraction news for each feature in each sample are estimated. The
approach utilized is MLE using the L-BFGS-B algorithm implemented in stats::optim. The as-
sumed likelihood function is derived from a Poisson mixture model with rates adjusted according to
each feature’s empirical U-content (the average number of Us present in sequencing reads mapping
to that feature in a particular sample). Fraction new estimates are then converted to degradation

22 fast_analysis

rate constant estimates using a solution to a simple ordinary differential equation model of RNA
metabolism.

Once fraction new and kdegs are estimated, the uncertainty in these parameters is estimated using
the Fisher Information. In the limit of large datasets, the variance of the MLE is inversely pro-
portional to the Fisher Information evaluated at the MLE. Mixture models are typically singular,
meaning that the Fisher information matrix is not positive definite and asymptotic results for the
variance do not necessarily hold. As the mutation rates are estimated a priori and fixed to be > 0,
these problems are eliminated. In addition, when assessing the uncertainty of replicate fraction new
estimates, the size of the dataset is the raw number of sequencing reads that map to a particular
feature. This number is often large (>100) which increases the validity of invoking asymptotics. As
of version 1.0.0, users can opt for an alternative uncertainty estimation strategy by setting Fisher to
FALSE. This strategy makes use of the standard error for the estimator of a binomial random vari-
ables rate of success parameter. If we can uniquely identify new and old reads, then the variance
in our estimate for the fraction of reads that is new is fn*(1-fn)/n. This uncertainty estimate will
typically underestimate fraction new replicate uncertainties. We showed in the bakR paper though
that the Fisher information strategy often significantly overestimates uncertainties of low coverage
or extreme fraction new features. Therefore, this more bullish, underconservative uncertainty quan-
tification can be useful on datasets with low mutation rates, extreme label times, or low sequecning
depth. We have found that false discovery rates are still well controlled when using this alternative
uncertainty quantification strategy.

With kdegs and their uncertainties estimated, replicate estimates are pooled and regularized. There
are two key steps in this downstream analysis. 1st, the uncertainty for each feature is used to
fit a linear ln(uncertainty) vs. log10(read depth) trend, and uncertainties for individual features
are shrunk towards the regression line. The uncertainty for each feature is a combination of the
Fisher Information asymptotic uncertainty as well as the amount of variability seen between esti-
mates. Regularization of uncertainty estimates is performed using the analytic results of a Normal
distribution likelihood with known mean and unknown variance and conjugate priors. The prior
parameters are estimated from the regression and amount of variability about the regression line.
The strength of regularization can be tuned by adjusting the prior_weight parameter, with larger
numbers yielding stronger shrinkage towards the regression line. The 2nd step is to regularize the
average kdeg estimates. This is done using the analytic results of a Normal distribution likelihood
model with unknown mean and known variance and conjugate priors. The prior parameters are
estimated from the population wide kdeg distribution (using its mean and standard deviation as the
mean and standard deviation of the normal prior). In the 1st step, the known mean is assumed to
be the average kdeg, averaged across replicates and weighted by the number of reads mapping to
the feature in each replicate. In the 2nd step, the known variance is assumed to be that obtained
following regularization of the uncertainty estimates.

Effect sizes (changes in kdeg) are obtained as the difference in log(kdeg) means between the ref-
erence and experimental sample(s), and the log(kdeg)s are assumed to be independent so that the
variance of the effect size is the sum of the log(kdeg) variances. P-values assessing the significance
of the effect size are obtained using a moderated t-test with number of degrees of freedom deter-
mined from the uncertainty regression hyperparameters and are adjusted for multiple testing using
the Benjamini- Hochberg procedure to control false discovery rates (FDRs).

In some cases, the assumed ODE model of RNA metabolism will not accurately model the dynamics
of a biological system being analyzed. In these cases, it is best to compare logit(fraction new)s
directly rather than converting fraction new to log(kdeg). This analysis strategy is implemented
when NSS is set to TRUE. Comparing logit(fraction new) is only valid If a single metabolic label

fast_analysis 23

time has been used for all samples. For example, if a label time of 1 hour was used for NR-seq data
from WT cells and a 2 hour label time was used in KO cells, this comparison is no longer valid as
differences in logit(fraction new) could stem from differences in kinetics or label times.

Value

List with dataframes providing information about replicate-specific and pooled analysis results. The
output includes:

• Fn_Estimates; dataframe with estimates for the fraction new and fraction new uncertainty for
each feature in each replicate. The columns of this dataframe are:

– Feature_ID; Numerical ID of feature
– Exp_ID; Numerical ID for experimental condition (Exp_ID from metadf)
– Replicate; Numerical ID for replicate
– logit_fn; logit(fraction new) estimate, unregularized
– logit_fn_se; logit(fraction new) uncertainty, unregularized and obtained from Fisher In-

formation
– nreads; Number of reads mapping to the feature in the sample for which the estimates

were obtained
– log_kdeg; log of degradation rate constant (kdeg) estimate, unregularized
– kdeg; degradation rate constant (kdeg) estimate
– log_kd_se; log(kdeg) uncertainty, unregularized and obtained from Fisher Information
– sample; Sample name
– XF; Original feature name

• Regularized_ests; dataframe with average fraction new and kdeg estimates, averaged across
the replicates and regularized using priors informed by the entire dataset. The columns of this
dataframe are:

– Feature_ID; Numerical ID of feature
– Exp_ID; Numerical ID for experimental condition (Exp_ID from metadf)
– avg_log_kdeg; Weighted average of log(kdeg) from each replicate, weighted by sample

and feature-specific read depth
– sd_log_kdeg; Standard deviation of the log(kdeg) estimates
– nreads; Total number of reads mapping to the feature in that condition
– sdp; Prior standard deviation for fraction new estimate regularization
– theta_o; Prior mean for fraction new estimate regularization
– sd_post; Posterior uncertainty
– log_kdeg_post; Posterior mean for log(kdeg) estimate
– kdeg; exp(log_kdeg_post)
– kdeg_sd; kdeg uncertainty
– XF; Original feature name

• Effects_df; dataframe with estimates of the effect size (change in logit(fn)) comparing each
experimental condition to the reference sample for each feature. This dataframe also includes
p-values obtained from a moderated t-test. The columns of this dataframe are:

– Feature_ID; Numerical ID of feature

24 FnPCA

– Exp_ID; Numerical ID for experimental condition (Exp_ID from metadf)
– L2FC(kdeg); Log2 fold change (L2FC) kdeg estimate or change in logit(fn) if NSS TRUE
– effect; LFC(kdeg)
– se; Uncertainty in L2FC_kdeg
– pval; P-value obtained using effect_size, se, and a z-test
– padj; pval adjusted for multiple testing using Benjamini-Hochberg procedure
– XF; Original feature name

• Mut_rates; list of two elements. The 1st element is a dataframe of s4U induced mutation rate
estimates, where the mut column represents the experimental ID and the rep column represents
the replicate ID. The 2nd element is the single background mutation rate estimate used

• Hyper_Parameters; vector of two elements, named a and b. These are the hyperparameters es-
timated from the uncertainties for each feature, and represent the two parameters of a Scaled
Inverse Chi-Square distribution. Importantly, a is the number of additional degrees of free-
dom provided by the sharing of uncertainty information across the dataset, to be used in the
moderated t-test.

• Mean_Variance_lms; linear model objects obtained from the uncertainty vs. read count re-
gression model. One model is run for each Exp_ID

Examples

Simulate small dataset
sim <- Simulate_bakRData(300, nreps = 2)

Fit fast model to get fast_df
Fit <- bakRFit(sim$bakRData)

Fit fast model with fast_analysis
Fast_Fit <- fast_analysis(Fit$Data_lists$Fast_df)

FnPCA Creating PCA plots with logit(fn) estimates

Description

This function creates a 2-component PCA plot using logit(fn) estimates. FnPCA has been deprecated
in favor of FnPCA2. The latter accepts a full bakRFit as input and handles imbalanced replicates.

Usage

FnPCA(obj, log_kdeg = FALSE)

FnPCA2 25

Arguments

obj Object contained within output of bakRFit. So, either Fast_Fit (MLE imple-
mentation fit), Stan_Fit (MCMC implementation fit), or Hybrid_Fit (Hybrid im-
plementation fit)

log_kdeg Boolean; if TRUE, then log(kdeg) estimates used for PCA rather than logit(fn).
Currently only compatible with Fast_Fit

Value

A ggplot object.

Examples

Simulate data for 500 genes and 2 replicates
sim <- Simulate_bakRData(500, nreps = 2)

Fit data with fast implementation
Fit <- bakRFit(sim$bakRData)

Fn PCA
FnPCA2(Fit, Model = "MLE")

log(kdeg) PCA
FnPCA2(Fit, Model = "MLE", log_kdeg = TRUE)

FnPCA2 Creating PCA plots with logit(fn) estimates

Description

This function creates a 2-component PCA plot using logit(fn) or log(kdeg) estimates.

Usage

FnPCA2(obj, Model = c("MLE", "Hybrid", "MCMC"), log_kdeg = FALSE)

Arguments

obj bakRFit object

Model String identifying implementation for which you want to generate a PCA plot

log_kdeg Boolean; if TRUE, then log(kdeg) estimates used for PCA rather than logit(fn).
Currently only compatible with MLE implementation

Value

A ggplot object.

26 fns

Examples

Simulate data for 500 genes and 2 replicates
sim <- Simulate_bakRData(500, nreps = 2)

Fit data with fast implementation
Fit <- bakRFit(sim$bakRData)

Fn PCA
FnPCA2(Fit, Model = "MLE")

log(kdeg) PCA
FnPCA2(Fit, Model = "MLE", log_kdeg = TRUE)

fns Example fraction news (fns) data frame

Description

Subset of fraction new estimates for dataset published by Luo et al. (2020). Fraction new estimates,
uncertainties, and read counts are included for 300 genes to keep the file size small.

Usage

data(fns)

Format

A dataframe with 1,800 rows and 5 variables. Input to bakRFndata

sample Sample name

XF Name of feature (e.g., ENSEMBL gene ID)

fn Estimate of fraction of reads from feature that were new

se Uncertainty in fraction new estimate (optional in bakRFnData)

n Number of sequencing reads

References

Luo et al. (2020) Biochemistry. 59(42), 4121-4142

Examples

data(fns)
data(metadf)
bakRFndataobj <- bakRFnData(fns, metadf)

fn_process 27

fn_process Curate data in bakRFnData object for statistical modeling

Description

fn_process creates the data structures necessary to analyze nucleotide recoding RNA-seq data with
the MLE and Hybrid implementations in bakRFit. The input to fn_process must be an object of
class bakRFnData.

Usage

fn_process(
obj,
totcut = 50,
totcut_all = 10,
Chase = FALSE,
FOI = c(),
concat = TRUE

)

Arguments

obj An object of class bakRFnData

totcut Numeric; Any transcripts with less than this number of sequencing reads in any
replicate of all experimental conditions are filtered out

totcut_all Numeric; Any transcripts with less than this number of sequencing reads in any
sample are filtered out

Chase Boolean; if TRUE, pulse-chase analysis strategy is implemented

FOI Features of interest; character vector containing names of features to analyze. If
FOI is non-null and concat is TRUE, then all minimally reliable FOIs will be
combined with reliable features passing all set filters (totcut and totcut_all).
If concat is FALSE, only the minimally reliable FOIs will be kept. A minimally
reliable FOI is one that passes filtering with minimally stringent parameters.

concat Boolean; If TRUE, FOI is concatenated with output of reliableFeatures

Details

fn_process first filters out features with less than totcut reads in any sample. It then creates the
necessary data structures for analysis with bakRFit and some of the visualization functions (namely
plotMA).

The 1st step executed by fn_process is to find the names of features which are deemed "reliable".
A reliable feature is one with sufficient read coverage in every single sample (i.e., > totcut_all reads
in all samples) and sufficient read coverage in at all replicates of at least one experimental condition
(i.e., > totcut reads in all replicates for one or more experimental conditions). This is done with a
call to reliableFeatures.

28 fn_process

The 2nd step is to extract only reliableFeatures from the fns dataframe in the bakRFnData object.
During this process, a numerical ID is given to each reliableFeature, with the numerical ID corre-
sponding to their order when arranged using dplyr::arrange.

The 3rd step is to prepare data structures that can be passed to fast_analysis and TL_stan (usually
accessed via the bakRFit helper function).

Value

returns list of objects that can be passed to TL_stan and/or fast_analysis. Those objects are:

• Stan_data; list that can be passed to TL_stan with Hybrid_Fit = TRUE. Consists of metadata
as well as data that Stan will analyze. Data to be analyzed consists of equal length vectors.
The contents of Stan_data are:

– NE; Number of datapoints for ’Stan’ to analyze (NE = Number of Elements)
– NF; Number of features in dataset
– TP; Numerical indicator of s4U feed (0 = no s4U feed, 1 = s4U fed)
– FE; Numerical indicator of feature
– num_mut; Number of U-to-C mutations observed in a particular set of reads
– MT; Numerical indicator of experimental condition (Exp_ID from metadf)
– nMT; Number of experimental conditions
– R; Numerical indicator of replicate
– nrep; Number of replicates (maximum across experimental conditions)
– nrep_vect; Vector of number of replicates in each experimental condition
– tl; Vector of label times for each experimental condition
– Avg_Reads; Standardized log10(average read counts) for a particular feature in a partic-

ular condition, averaged over replicates
– sdf; Dataframe that maps numerical feature ID to original feature name. Also has read

depth information
– sample_lookup; Lookup table relating MT and R to the original sample name

• Fn_est; A data frame containing fraction new estimates for +s4U samples:

– sample; Original sample name
– XF; Original feature name
– fn; Fraction new estimate
– n; Number of reads
– Feature_ID; Numerical ID for each feature
– Replicate; Numerical ID for each replicate
– Exp_ID; Numerical ID for each experimental condition
– tl; s4U label time
– logit_fn; logit of fraction new estimate
– kdeg; degradation rate constant estimate
– log_kdeg; log of degradation rate constant estimate
– logit_fn_se; Uncertainty of logit(fraction new) estimate
– log_kd_se; Uncertainty of log(kdeg) estimate

GSprocessing 29

• Count_Matrix; A matrix with read count information. Each column represents a sample and
each row represents a feature. Each entry is the raw number of read counts mapping to a
particular feature in a particular sample. Column names are the corresponding sample names
and row names are the corresponding feature names.

• Ctl_data; Identical content to Fn_est but for any -s4U data (and thus with fn estimates set to
0). Will be NULL if no -s4U data is present

Examples

Load cB
data("cB_small")

Load metadf
data("metadf")

Create bakRData
bakRData <- bakRData(cB_small, metadf)

Preprocess data
data_for_bakR <- cBprocess(obj = bakRData)

GSprocessing Prep GRAND-SLAM output for bakRFnData

Description

This function creates a fraction new estimate data frame that can be passed to bakRFnData, using
main .tsv file output by GRAND-SLAM.

Usage

GSprocessing(GS, use_symbol = FALSE)

Arguments

GS Table of read counts and NTR (fraction new) estimate parameters output by
GRAND-SLAM. Corresponds to the run_name.tsv file included in GRAND-
SLAM output

use_symbol Logical; if TRUE, then Symbol column rather than Gene column is used as
feature column (XF) in output data frame.

Value

A data frame that can be passed as the fns parameter to bakRFnData

30 GS_table

Examples

Load GRAND-SLAM table
data("GS_table")

Create bakRData object
fns <- GSprocessing(GS_table)

GS_table Example cB data frame

Description

Subset of a GRAND-SLAM main output table from anlaysis of a dataset published in Luo et al.
2020. Data for 300 randomly selected genes is included to keep file size small.

Usage

data(GS_table)

Format

A dataframe with 300 rows and 63 variables; each row corresponds to GRAND-SLAM parameter
estimates for a single gene and 6 different samples (4 +s4U and 2 -s4U). Description of all columns
can be found on GRAND-SLAM wiki

References

Luo et al. (2020) Biochemistry. 59(42), 4121-4142

Examples

data(GS_table)
data(metadf)
fns <- GSprocessing(GS_table)
bdfo <- bakRFnData(fns, metadf)

https://github.com/erhard-lab/gedi/wiki/GRAND-SLAM

Heatmap_kdeg 31

Heatmap_kdeg Creating a L2FC(kdeg) matrix that can be passed to heatmap func-
tions

Description

Heatmap_kdeg creates a matrix where each column represents a pair of samples (reference and
experimental) and each row represents a feature. The entry in the ith row and jth column is the
L2FC(kdeg) for feature i when comparing sample with experimental ID j+1 to the reference sample

Usage

Heatmap_kdeg(obj, zscore = FALSE, filter_sig = FALSE, FDR = 0.05)

Arguments

obj Object outputted by bakRFit

zscore Logical; if TRUE, then each matrix entry is log-odds fold change in the fraction
new (a.k.a the effect size) divided by the uncertainty in the effect size

filter_sig Logical; if TRUE, then only features which have a statistically significant L2FC(kdeg)
in at least one comparison are kept

FDR Numeric; False discovery to control at if filter_sig is TRUE.

Value

A matrix. Rows represent transcripts which were differentially expressed and columns represent
(from left to right) differential kinetics z-score, differential expression z-score, and a mechanism
score where positive represents synthesis driven and negative degradation driven changes in expres-
sion.

Examples

Simulate data
sim <- Simulate_bakRData(1000)

Fit data with fast implementation
Fit <- bakRFit(sim$bakRData)

L2FC(kdeg) heatmap matrix
L2FC_kdeg_heat <- Heatmap_kdeg(Fit$Fast_Fit)

32 new_bakRData

metadf Example meatdf data frame

Description

metadf dataframe describing the data present in the cB file that can be loaded with data(cB_small).
The contents are discussed in great detail in the Getting_started vignette.

Usage

data(metadf)

Format

A dataframe with 6 rows and 2 variables: row names are samples in the corresponding cB

tl time of s4U labeling, in hours

Exp_ID numerical ID of reference and experimental conditions; 1 is reference and 2 is the single
experimental condition

Examples

data(cB_small)
data(metadf)
bakRdat <- bakRData(cB_small, metadf)

new_bakRData bakRData object constructor for internal use

Description

This function efficiently creates an object of class bakRData without performing rigorous checks

Usage

new_bakRData(cB, metadf)

Arguments

cB Dataframe with columns corresponding to feature ID, number of Ts, number of
mutations, sample ID, and number of identical observations

metadf Dataframe detailing s4U label time and experimental ID of each sample

new_bakRFnData 33

new_bakRFnData bakRFnData object constructor for internal use

Description

This function efficiently creates an object of class bakRFnData without performing rigorous checks

Usage

new_bakRFnData(fns, metadf)

Arguments

fns Dataframe with columns corresponding to sample names (sample), feature IDs
(XF), fraction new estimates (fn), and number of sequencing reads (nreads)

metadf Dataframe detailing s4U label time and experimental ID of each sample

NSSHeat Construct heatmap for non-steady state (NSS) analysis

Description

This uses the output of bakR and a differential expression analysis software to construct a dataframe
that can be passed to pheatmap::pheatmap(). This heatmap will display the result of a steady-state
quasi-independent analysis of NR-seq data.

Usage

NSSHeat(
bakRFit,
DE_df,
bakRModel = c("MLE", "Hybrid", "MCMC"),
DE_cutoff = 0.05,
bakR_cutoff = 0.05,
Exp_ID = 2,
lid = 4

)

Arguments

bakRFit bakRFit object

DE_df dataframe of required format with differential expression analysis results. See
Further-Analyses vignette for details on what this dataframe should look like

bakRModel Model fit from which bakR implementation should be used? Options are MLE,
Hybrid, or MCMC

34 plotMA

DE_cutoff padj cutoff for calling a gene differentially expressed

bakR_cutoff padj cutoff for calling a fraction new significantly changed

Exp_ID Exp_ID of experimental sample whose comparison to the reference sample you
want to use. Only one reference vs. experimental sample comparison can be
used at a time

lid Maximum absolute value for standardized score present in output. This is for
improving aesthetics of any heatmap generated with the output.

Value

returns data frame that can be passed to pheatmap::pheatmap()

Examples

Simulate small dataset
sim <- Simulate_bakRData(100, nreps = 2)

Analyze data with bakRFit
Fit <- bakRFit(sim$bakRData)

Number of features that made it past filtering
NF <- nrow(Fit$Fast_Fit$Effects_df)

Simulate mock differential expression data frame
DE_df <- data.frame(XF = as.character(1:NF),

L2FC_RNA = stats::rnorm(NF, 0, 2))

DE_df$DE_score <- DE_df$L2FC_RNA/0.5
DE_df$DE_se <- 0.5

DE_df$DE_pval <- 2*stats::dnorm(-abs(DE_df$DE_score))
DE_df$DE_padj <- 2*stats::p.adjust(DE_df$DE_pval, method = "BH")

perform NSS analysis
NSS_analysis <- DissectMechanism(bakRFit = Fit,

DE_df = DE_df,
bakRModel = "MLE")

plotMA Creating L2FC(kdeg) MA plot from fit objects

Description

This function outputs a L2FC(kdeg) MA plot. Plots are colored according to statistical significance
and the sign of L2FC(kdeg)

plotVolcano 35

Usage

plotMA(
obj,
Model = c("MLE", "Hybrid", "MCMC"),
FDR = 0.05,
Exps = 2,
Exp_shape = FALSE

)

Arguments

obj Object of class bakRFit outputted by bakRFit function

Model String identifying implementation for which you want to generate an MA plot

FDR False discovery rate to control at for significance assessment

Exps Vector of Experimental IDs to include in plot; must only contain elements within
2:(# of experimental IDs). If NULL, data for all Experimental IDs is plotted.

Exp_shape Logical indicating whether to use Experimental ID as factor determining point
shape in volcano plot

Value

A ggplot object. Each point represents a transcript. The x-axis is log-10 transformed replicate
average read counts, y-axis is the log-2 fold-change in the degradation rate constant.

Examples

Simulate data for 500 genes and 2 replicates
sim <- Simulate_bakRData(500, nreps = 2)

Fit data with fast implementation
Fit <- bakRFit(sim$bakRData)

Volcano plot
plotMA(Fit, Model = "MLE")

plotVolcano Creating L2FC(kdeg) volcano plot from fit objects

Description

This function creates a L2FC(kdeg) volcano plot. Plots are colored according to statistical signifi-
cance and sign of L2FC(kdeg).

36 QC_checks

Usage

plotVolcano(obj, FDR = 0.05, Exps = 2, Exp_shape = FALSE)

Arguments

obj Object contained within output of bakRFit. So, either Fast_Fit (MLE imple-
mentation fit), Stan_Fit (MCMC implementation fit), or Hybrid_Fit (Hybrid im-
plementation fit)

FDR False discovery rate to control at for significance assessment

Exps Vector of Experimental IDs to include in plot; must only contain elements within
2:(# of experimental IDs). If NULL, data for all Experimental IDs is plotted.

Exp_shape Logical indicating whether to use Experimental ID as factor determining point
shape in volcano plot

Value

A ggplot object. Each point represents a transcript. The x-axis is the log-2 fold change in the
degradation rate constant and the y-axis is the log-10 transformed multiple test adjusted p value.

Examples

Simulate data for 500 genes and 2 replicates
sim <- Simulate_bakRData(500, nreps = 2)

Fit data with fast implementation
Fit <- bakRFit(sim$bakRData)

Volcano plot
plotVolcano(Fit$Fast_Fit)

QC_checks Check data quality and make suggestions to user about what analyses
to run.

Description

QC_checks takes as input a bakRFit or bakRFnFit object and uses the Fast_Fit object to assess
data quality and make suggestions about which implementation to run next. QC_checks takes
into account the mutation rates in all samples, the fraction new distributions, the reproducibility of
fraction new estimates, and the read lengths. It then outputs a number of diagnostic plots that might
alert users to problems in their data. It also outputs messages informing users what implementation
is best used next.

Usage

QC_checks(obj)

QuantifyDropout 37

Arguments

obj bakRFit object

Value

A list with 3 components:

• raw_mutrates. This is a plot of the raw T-to-C mutation rates in all samples analyzed by bakR.
It includes horizontal lines as reference for what could be considered "too low" to be useful in
s4U fed samples.

• conversion_rates. This is a plot of the estimated T-to-C mutation rates in new and old reads.
Thus, each bar represents the probability that a U in a new/old read is mutated. It includes
horizontal lines as reference for what could be considered good mutation rates.

• correlation_plots. This is a list of ggplot objects. Each is a scatter plot comparing estimates
of the fraction new in one replicate to another replicate in the same experimental condition. A
y=x guide line is included to reveal any estimation biases.

Examples

Simulate data for 500 genes and 2 replicates
sim <- Simulate_bakRData(500, nreps = 2)

Fit data with fast implementation
Fit <- bakRFit(sim$bakRData)

Run QC
QC <- QC_checks(Fit)

QuantifyDropout Fit dropout model to quantify dropout frequency

Description

QuantifyDropout estimates the percentage of 4-thiouridine containing RNA that was lost during
library preparation (pdo).

Usage

QuantifyDropout(
obj,
scale_init = 1.05,
pdo_init = 0.3,
keep_data = FALSE,
no_message = FALSE,
...

)

38 reliableFeatures

Arguments

obj bakRFit object

scale_init Numeric; initial estimate for -s4U/+s4U scale factor. This is the factor difference
in RPM normalized read counts for completely unlabeled transcripts (i.e., highly
stable transcript) between the +s4U and -s4U samples.

pdo_init Numeric; initial estimtae for the dropout rate. This is the probability that an s4U
labeled RNA molecule is lost during library prepartion.

keep_data Logical; if TRUE, will return list with two elements. First element is the regular
return (data frame with dropout quantified), and the second element will be the
data frame that was used for fitting the dropout model. This is useful if wanting
to visualize the fit. See Return documetation for more details

no_message Logical; if TRUE, will not output message regarding estimated rates of dropout
in each sample

... Additional (optional) parameters to be passed to stats::nls()

Value

If keep_data is FALSE, then only a data frame with the dropout rate estimates (pdo) in each sample
is returned. If keep_data is TRUE, then a list with two elements is returned. One element is the
pdo data frame always returned, and the second is the data frame containing information passed to
stats::nls for pdo estimation.

Examples

Simulate data for 500 genes and 2 replicates with 40% dropout
sim <- Simulate_relative_bakRData(500, depth = 100000,

nreps = 2, p_do = 0.4)

Fit data with fast implementation
Fit <- bakRFit(sim$bakRData)

Quantify dropout
Fit <- QuantifyDropout(Fit)

reliableFeatures Identify features (e.g., transcripts) with high quality data

Description

This function identifies all features (e.g., transcripts, exons, etc.) for which the mutation rate is
below a set threshold in the control (-s4U) sample and which have more reads than a set threshold
in all samples. If there is no -s4U sample, then only the read count cutoff is considered. Additional
filtering options are only relevant if working with short RNA-seq read data. This includes filtering
out features with extremely low empirical U-content (i.e., the average number of Us in sequencing
reads from that feature) and those with very few reads having at least 3 Us in them.

reliableFeatures 39

Usage

reliableFeatures(
obj,
high_p = 0.2,
totcut = 50,
totcut_all = 10,
Ucut = 0.25,
AvgU = 4

)

Arguments

obj Object of class bakRData

high_p highest mutation rate accepted in control samples

totcut Numeric; Any transcripts with less than this number of sequencing reads in any
replicate of all experimental conditions are filtered out

totcut_all Numeric; Any transcripts with less than this number of sequencing reads in any
sample are filtered out

Ucut Must have a fraction of reads with 2 or less Us less than this cutoff in all samples

AvgU Must have an average number of Us greater than this

Value

vector of gene names that passed reliability filter

Examples

Load cB
data("cB_small")

Load metadf
data("metadf")

Create bakRData
bakRData <- bakRData(cB_small, metadf)

Find reliable features
features_to_keep <- reliableFeatures(obj = bakRData)

40 Simulate_bakRData

Simulate_bakRData Simulating nucleotide recoding data

Description

Simulate_bakRData simulates a bakRData object. It’s output also includes the simulated values of
all kinetic parameters of interest. Only the number of genes (ngene) has to be set by the user, but
an extensive list of additional parameters can be adjusted.

Usage

Simulate_bakRData(
ngene,
num_conds = 2L,
nreps = 3L,
eff_sd = 0.75,
eff_mean = 0,
fn_mean = 0,
fn_sd = 1,
kslog_c = 0.8,
kslog_sd = 0.95,
tl = 60,
p_new = 0.05,
p_old = 0.001,
read_lengths = 200L,
p_do = 0,
noise_deg_a = -0.3,
noise_deg_b = -1.5,
noise_synth = 0.1,
sd_rep = 0.05,
low_L2FC_ks = -1,
high_L2FC_ks = 1,
num_kd_DE = c(0L, as.integer(rep(round(as.integer(ngene)/2), times =
as.integer(num_conds) - 1))),

num_ks_DE = rep(0L, times = as.integer(num_conds)),
scale_factor = 150,
sim_read_counts = TRUE,
a1 = 5,
a0 = 0.01,
nreads = 50L,
alpha = 25,
beta = 75,
STL = FALSE,
STL_len = 40,
lprob_U_sd = 0,
lp_sd = 0

)

Simulate_bakRData 41

Arguments

ngene Number of genes to simulate data for

num_conds Number of experimental conditions (including the reference condition) to simu-
late

nreps Number of replicates to simulate

eff_sd Effect size; more specifically, the standard deviation of the normal distribution
from which non-zero changes in logit(fraction new) are pulled from.

eff_mean Effect size mean; mean of normal distribution from which non-zero changes in
logit(fraction new) are pulled from. Note, setting this to 0 does not mean that
some of the significant effect sizes will be 0, as any exact integer is impossible to
draw from a continuous random number generator. Setting this to 0 just means
that there is symmetric stabilization and destabilization

fn_mean Mean of fraction news of simulated transcripts in reference condition. The
logit(fraction) of RNA from each transcript that is metabolically labeled (new)
is drawn from a normal distribution with this mean

fn_sd Standard deviation of fraction news of simulated transcripts in reference con-
dition. The logit(fraction) of RNA from each transcript that is metabolically
labeled (new) is drawn from a normal distribution with this sd

kslog_c Synthesis rate constants will be drawn from a lognormal distribution with mean-
log = kslog_c - mean(log(kd_mean)) where kd_mean is determined from the
fraction new simulated for each gene as well as the label time (tl).

kslog_sd Synthesis rate lognormal standard deviation; see kslog_c documentation for de-
tails

tl metabolic label feed time

p_new metabolic label (e.g., s4U) induced mutation rate. Can be a vector of length
num_conds

p_old background mutation rate

read_lengths Total read length for each sequencing read (e.g., PE100 reads correspond to
read_lengths = 200)

p_do Rate at which metabolic label containing reads are lost due to dropout; must be
between 0 and 1

noise_deg_a Slope of trend relating log10(standardized read counts) to log(replicate variabil-
ity)

noise_deg_b Intercept of trend relating log10(standardized read counts) to log(replicate vari-
ability)

noise_synth Homoskedastic variability of L2FC(ksyn)

sd_rep Variance of lognormal distribution from which replicate variability is drawn

low_L2FC_ks Most negative L2FC(ksyn) that can be simulated

high_L2FC_ks Most positive L2FC(ksyn) that can be simulated

num_kd_DE Vector where each element represents the number of genes that show a signifi-
cant change in stability relative to the reference. 1st entry must be 0 by definition
(since relative to the reference the reference sample is unchanged)

42 Simulate_bakRData

num_ks_DE Same as num_kd_DE but for significant changes in synthesis rates.

scale_factor Factor relating RNA concentration (in arbitrary units) to average number of read
counts

sim_read_counts

Logical; if TRUE, read counts are simulated as coming from a heterodisperse
negative binomial distribution

a1 Heterodispersion 1/reads dependence parameter

a0 High read depth limit of negative binomial dispersion parameter

nreads Number of reads simulated if sim_read_counts is FALSE

alpha shape1 parameter of the beta distribution from which U-contents (probability
that a nucleotide in a read from a transcript is a U) are drawn for each gene.

beta shape2 parameter of the beta distribution from which U-contents (probability
that a nucleotide in a read from a transcript is a U) are drawn for each gene.

STL logical; if TRUE, simulation is of STL-seq rather than a standard TL-seq exper-
iment. The two big changes are that a short read length is required (< 60 nt) and
that every read for a particular feature will have the same number of Us. Only
one read length is simulated for simplicity.

STL_len Average length of simulated STL-seq length. Since Pol II typically pauses about
20-60 bases from the promoter, this should be around 40

lprob_U_sd Standard deviation of the logit(probability nt is a U) for each sequencing read.
The number of Us in a sequencing read are drawn from a binomial distribution
with prob drawn from a logit-Normal distribution with this logit-sd.

lp_sd Standard deviation of logit(probability a U is mutated) for each U. The number
of mutations in a given read is the sum of nU Bernoulli random variables, where
nU is the number of Us, and p is drawn from a logit-normal distribution with
lp_sd standard deviation on logit scale.

Details

Simulate_bakRData simulates a bakRData object using a realistic generative model with many
adjustable parameters. Average RNA kinetic parameters are drawn from biologically inspired dis-
tributions. Replicate variability is simulated by drawing a feature’s fraction new in a given replicate
from a logit-Normal distribution with a heteroskedastic variance term with average magnitude given
by the chosen read count vs. variance relationship. For each replicate, a feature’s ksyn is drawn
from a homoskedastic lognormal distribution. Read counts can either be set to the same value for all
simulated features or can be simulated according to a heterodisperse negative binomial distribution.
The latter is the default

The number of Us in each sequencing read is drawn from a binomial distribution with number of
trials equal to the read length and probability of each nucleotide being a U drawn from a beta distri-
bution. Each read is assigned to the new or old population according to a Bernoulli distribution with
p = fraction new. The number of mutations in each read are then drawn from one of two binomial
distributions; if the read is assigned to the population of new RNA, the number of mutations are
drawn from a binomial distribution with number of trials equal to the number of Us and probability
of mutation = p_new; if the read is assigned to the population of old RNA, the number of mutations
is instead drawn from a binomial distribution with the same number of trials but with the probability

Simulate_bakRData 43

of mutation = p_old. p_new must be greater than p_old because mutations in new RNA arise from
both background mutations that occur with probability p_old as well as metabolic label induced
mutations

Simulated read counts should be treated as if they are spike-in and RPKM normalized, so the same
scale factor of 1 can be applied to each sample when comparing the sequencing reads (e.g., if you
are performing differential expression analysis).

Function to simulate a bakRData object according to a realistic generative model

Value

A list containing a simulated bakRData object as well as a list of simulated kinetic parameters of
interest. The contents of the latter list are:

• Effect_sim; Dataframe meant to mimic formatting of Effect_df that are part of bakRFit(StanFit
= TRUE), bakRFit(HybridFit = TRUE) and bakRFit(bakRData object) output.

• Fn_mean_sim; Dataframe meant to mimic formatting of Regularized_ests that is part of bakRFit(bakRData
object) output. Contains information about the true fraction new simulated in each condition
(the mean of the normal distribution from which replicate fraction news are simulated)

• Fn_rep_sim; Dataframe meant to mimic formatting of Fn_Estimates that is part of bakRFit(bakRData
object) output. Contains information about the fraction new simulated for each feature in
each replicate of each condition.

• L2FC_ks_mean; The true L2FC(ksyn) for each feature in each experimental condition. The i-
th column corresponds to the L2FC(ksyn) when comparing the i-th condition to the reference
condition (defined as the 1st condition) so the 1st column is always all 0s

• RNA_conc; The average number of normalized read counts expected for each feature in each
sample.

Examples

2 replicate, 2 experimental condition, 1000 gene simulation
sim_2reps <- Simulate_bakRData(ngene = 1000, nreps = 2)

3 replicate, 2 experimental condition, 1000 gene simulation
with 100 instances of differential degradation kinetics
sim_3reps <- Simulate_bakRData(ngene = 1000, num_kd_DE = c(0, 100))

2 replicates, 3 experimental condition, 1000 gene simulation
with 100 instances of differential degradation kinetics in the 1st
condition and no instances of differential degradation kinetics in the
2nd condition
sim_3es <- Simulate_bakRData(ngene = 1000,

nreps = 2,
num_conds = 3,
num_kd_DE = c(0, 100, 0))

44 Simulate_relative_bakRData

Simulate_relative_bakRData

Simulating nucleotide recoding data with relative count data

Description

Simulate_relative_bakRData simulates a bakRData object. It’s output also includes the simu-
lated values of all kinetic parameters of interest.

Usage

Simulate_relative_bakRData(
ngene,
depth,
num_conds = 2L,
nreps = 3L,
eff_sd = 0.75,
eff_mean = 0,
kdlog_mean = -1.8,
kdlog_sd = 0.65,
kslog_mean = 1,
kslog_sd = 0.65,
tl = 2,
p_new = 0.05,
p_old = 0.001,
read_lengths = 200L,
p_do = 0,
noise_deg_a = -0.3,
noise_deg_b = -1.5,
noise_synth = 0.1,
sd_rep = 0.05,
low_L2FC_ks = -1,
high_L2FC_ks = 1,
num_kd_DE = c(0L, as.integer(rep(round(as.integer(ngene)/2), times =
as.integer(num_conds) - 1))),

num_ks_DE = rep(0L, times = as.integer(num_conds)),
sim_read_counts = TRUE,
a1 = 5,
a0 = 0.01,
nreads = 50L,
alpha = 25,
beta = 75,
STL = FALSE,
STL_len = 40,
lprob_U_sd = 0,
lp_sd = 0

)

Simulate_relative_bakRData 45

Arguments

ngene Number of genes to simulate data for

depth Total number of reads to simulate

num_conds Number of experimental conditions (including the reference condition) to simu-
late

nreps Number of replicates to simulate

eff_sd Effect size; more specifically, the standard deviation of the normal distribution
from which non-zero changes in logit(fraction new) are pulled from.

eff_mean Effect size mean; mean of normal distribution from which non-zero changes in
logit(fraction new) are pulled from. Note, setting this to 0 does not mean that
some of the significant effect sizes will be 0, as any exact integer is impossible to
draw from a continuous random number generator. Setting this to 0 just means
that there is symmetric stabilization and destabilization

kdlog_mean Degradation rate constants will be drawn from lognormal distribution with this
logmean

kdlog_sd Degradation rate constants will be drawn from lognormal distribution with this
logsd

kslog_mean Synthesis rate constants will be drawn from a lognormal distribution with this
mean

kslog_sd Synthesis rate constants will be drawn from a lognormal distribution with this
logsd

tl metabolic label feed time

p_new metabolic label (e.g., s4U) induced mutation rate. Can be a vector of length
num_conds

p_old background mutation rate

read_lengths Total read length for each sequencing read (e.g., PE100 reads correspond to
read_lengths = 200)

p_do Rate at which metabolic label containing reads are lost due to dropout; must be
between 0 and 1

noise_deg_a Slope of trend relating log10(standardized read counts) to log(replicate variabil-
ity)

noise_deg_b Intercept of trend relating log10(standardized read counts) to log(replicate vari-
ability)

noise_synth Homoskedastic variability of L2FC(ksyn)

sd_rep Variance of lognormal distribution from which replicate variability is drawn

low_L2FC_ks Most negative L2FC(ksyn) that can be simulated

high_L2FC_ks Most positive L2FC(ksyn) that can be simulated

num_kd_DE Vector where each element represents the number of genes that show a signifi-
cant change in stability relative to the reference. 1st entry must be 0 by definition
(since relative to the reference the reference sample is unchanged)

num_ks_DE Same as num_kd_DE but for significant changes in synthesis rates.

46 Simulate_relative_bakRData

sim_read_counts

Logical; if TRUE, read counts are simulated as coming from a heterodisperse
negative binomial distribution

a1 Heterodispersion 1/reads dependence parameter

a0 High read depth limit of negative binomial dispersion parameter

nreads Number of reads simulated if sim_read_counts is FALSE

alpha shape1 parameter of the beta distribution from which U-contents (probability
that a nucleotide in a read from a transcript is a U) are drawn for each gene.

beta shape2 parameter of the beta distribution from which U-contents (probability
that a nucleotide in a read from a transcript is a U) are drawn for each gene.

STL logical; if TRUE, simulation is of STL-seq rather than a standard TL-seq exper-
iment. The two big changes are that a short read length is required (< 60 nt) and
that every read for a particular feature will have the same number of Us. Only
one read length is simulated for simplicity.

STL_len Average length of simulated STL-seq length. Since Pol II typically pauses about
20-60 bases from the promoter, this should be around 40

lprob_U_sd Standard deviation of the logit(probability nt is a U) for each sequencing read.
The number of Us in a sequencing read are drawn from a binomial distribution
with prob drawn from a logit-Normal distribution with this logit-sd.

lp_sd Standard deviation of logit(probability a U is mutated) for each U. The number
of mutations in a given read is the sum of nU Bernoulli random variables, where
nU is the number of Us, and p is drawn from a logit-normal distribution with
lp_sd standard deviation on logit scale.

Details

The main difference between Simulate_relative_bakRData and Simulate_bakRData is that the
former requires both the number of genes (ngene) and the total number of reads (depth) has to
be set. In the latter, only the number of genes is set, and the number of reads for each gene is
simulated so that no matter how many genes are simulated, the number of reads given default
parameters is reflective of what is seen in 20,000,000 read human RNA-seq libraries. The ben-
efit of Simulate_relative_bakRData is that it is easier to test the impact of depth on model
performance. This can theoretically be done by changing the synthesis rate constant parame-
ters in Simulate_bakRData, but the relationship between these parameters and sequencing depth
is unintuitive. The benefit of Simulate_bakRData is that fewer genes can be simulated while
still yielding reasonable per-gene coverage without figuring out what the total depth in the small
gene subset should be. This is nice for testing bakR and other analysis tools on small datasets.
Simulate_relative_bakRData is a more realistic simulation that better accounts for the relative
nature of RNA-seq read counts (i.e., expected number of reads from a given feature is related to
proportion of RNA molecules coming from that feature).

Another difference between Simulate_relative_bakRData and Simulate_bakRData is that Simulate_relative_bakRData
uses the label time and simulated degradation rate constants to infer the fraction new, whereas
Simulate_bakRData uses simulated fraction news and the label time to infer the degradation rate
constants. Thus, Simulate_relative_bakRData is preferable for assessing the impact of label
time on model performance (since it will have a realistic impact on the fraction new, and the distri-
bution of fraction news has a major impact on model performance). Similarly, Simulate_bakRData

Simulate_relative_bakRData 47

is preferable for directly assessing the impact of fraction news on model performance, without hav-
ing to think about how both the label time and simulated degradation rate constant distribution.

If investigating dropout, only Simulate_relative_bakRData should be used, as the accurate sim-
ulation of read counts as being a function of the relative abundance of each RNA feature is crucial
to accurately simulate dropout.

Function to simulate a bakRData object according to a realistic generative model

Value

A list containing a simulated bakRData object as well as a list of simulated kinetic parameters of
interest. The contents of the latter list are:

• Effect_sim; Dataframe meant to mimic formatting of Effect_df that are part of bakRFit(StanFit
= TRUE), bakRFit(HybridFit = TRUE) and bakRFit(bakRData object) output.

• Fn_mean_sim; Dataframe meant to mimic formatting of Regularized_ests that is part of bakRFit(bakRData
object) output. Contains information about the true fraction new simulated in each condition
(the mean of the normal distribution from which replicate fraction news are simulated)

• Fn_rep_sim; Dataframe meant to mimic formatting of Fn_Estimates that is part of bakRFit(bakRData
object) output. Contains information about the fraction new simulated for each feature in
each replicate of each condition.

• L2FC_ks_mean; The true L2FC(ksyn) for each feature in each experimental condition. The i-
th column corresponds to the L2FC(ksyn) when comparing the i-th condition to the reference
condition (defined as the 1st condition) so the 1st column is always all 0s

• RNA_conc; The average number of normalized read counts expected for each feature in each
sample.

Examples

2 replicate, 2 experimental condition, 1000 gene simulation
sim_2reps <- Simulate_relative_bakRData(ngene = 1000, depth = 100000,

nreps = 2)

3 replicate, 2 experimental condition, 1000 gene simulation
with 100 instances of differential degradation kinetics
sim_3reps <- Simulate_relative_bakRData(ngene = 1000, depth = 100000,

num_kd_DE = c(0, 100))

2 replicates, 3 experimental condition, 1000 gene simulation
with 100 instances of differential degradation kinetics in the 1st
condition and no instances of differential degradation kinetics in the
2nd condition
sim_3es <- Simulate_relative_bakRData(ngene = 1000, depth = 100000,

nreps = 2,
num_conds = 3,
num_kd_DE = c(0, 100, 0))

48 TL_stan

TL_stan Fit ’Stan’ models to nucleotide recoding RNA-seq data analysis

Description

TL_stan is an internal function to analyze nucleotide recoding RNA-seq data with a fully Bayesian
hierarchical model implemented in the PPL Stan. TL_stan estimates kinetic parameters and differ-
ences in kinetic parameters between experimental conditions. When assessing differences, a single
reference sample is compared to each collection of experimental samples provided.

Usage

TL_stan(
data_list,
Hybrid_Fit = FALSE,
keep_fit = FALSE,
NSS = FALSE,
chains = 1,
...

)

Arguments

data_list List to pass to ’Stan’ of form given by cBprocess

Hybrid_Fit Logical; if TRUE, Hybrid ’Stan’ model that takes as data output of fast_analysis
is run.

keep_fit Logical; if TRUE, ’Stan’ fit object is included in output; typically large file so
default FALSE.

NSS Logical; if TRUE, models that directly compare logit(fn)s are used to avoid
steady-state assumption

chains Number of Markov chains to sample from. The default is to only run a sin-
gle chain. Typical NR-seq datasets yield very memory intensive analyses, but
running a single chain should decrease this burden. For reference, running the
MCMC implementation (Hybrid_Fit = FALSE) with 3 chains on an NR-seq
dataset with 3 replicates of 2 experimental conditions with around 20 million
raw (unmapped) reads per sample requires over 100 GB of RAM. With a sin-
gle chain, this burden drops to around 20 GB. Due to memory demands and
time constraints (runtimes for the MCMC implementation border will likely be
around 1-2 days) means that these models should usually be run in a specialized
High Performance Computing (HPC) system.

... Arguments passed to rstan::sampling (e.g. iter, warmup, etc.).

TL_stan 49

Details

Two implementations of a similar model can be fit with TL_stan: a complete nucleotide recod-
ing RNA-seq analysis and a hybrid analysis that takes as input results from fast_analysis. In
the complete analysis (referred to in the bakR publication as the MCMC implementation), U-to-C
mutations are modeled as coming from a Poisson distribution with rate parameter adjusted by the
empirical U-content of each feature analyzed. Features represent whatever the user defined them
to be when constructing the bakR data object. Typical feature categories are genes, exons, etc. Hi-
erarchical modeling is used to pool data across replicates and across features. More specifically,
replicate data for the same feature are partially pooled to estimate feature-specific mean fraction
news and uncertainties. Feature means are partially pooled to estimate dataset-wide mean fraction
news and standard deviations. The replicate variability for each feature is also partially pooled to de-
termine a condition-wide heteroskedastic relationship between read depths and replicate variability.
Partial pooling reduces subjectivity when determining priors by allowing the model to determine
what priors make sense given the data. Partial pooling also regularizes estimates, reducing estimate
variability and thus increasing estimate accuracy. This is particularly important for replicate vari-
ability estimates, which often rely on only a few replicates of data per feature and thus are typically
highly unstable.

The hybrid analysis (referred to in the bakR publication as the Hybrid implementation) inherits
the hierarchical modeling structure of the complete analysis, but reduces computational burden
by foregoing per-replicate-and-feature fraction new estimation and uncertainty quantification. In-
stead, the hybrid analysis takes as data fraction new estimates and approximate uncertainties from
fast_analysis. Runtimes of the hybrid analysis are thus often an order of magnitude shorter than
with the complete analysis, but loses some accuracy by relying on point estimates and uncertainty
quantification that is only valid in the limit of large dataset sizes (where the dataset size for the
per-replicate-and-feature fraction new estimate is the raw number of sequencing reads mapping to
the feature in that replicate).

Users also have the option to save or discard the Stan fit object. Fit objects can be exceedingly
large (> 10 GB) for most nucleotide recoding RNA-seq datasets. Therefore, if you don’t want to
store such a large object, a summary object will be saved instead, which greatly reduces the size
of the output (~ 10-50 MB) while still retaining much of the important information. In addition,
the output of TL_stan provides the estimates and uncertainties for key parameters (L2FC(kdeg),
kdeg, and fraction new) that will likely be of most interest. That being said, there are some analyses
that are only possible if the original fit object is saved. For example, the fit object will contain
all of the samples from the posterior collected during model fitting. Thus, new parameters (e.g.,
L2FC(kdeg)’s comparing two experimental samples) not naturally generated by the model can be
estimated post-hoc. Still, there are often approximate estimates that can be obtained for such pa-
rameters that don’t rely on the full fit object. One analysis that is impossible without the original fit
object is generating model diagnostic plots. These include trace plots (to show mixing and efficient
parameter space exploration of the Markov chains), pairs plots (to show correlations between pa-
rameters and where any divergences occurred), and other visualizations that can help users assess
how well a model ran. Because the models implemented by TL_stan are extensively validated, it is
less likely that such diagnostics will be helpful, but often anomalies on your data can lead to poor
model convergence, in which case assessing model diagnostics can help you identify the source of
problems in your data. Summary statistics describing how well the model was able to estimate each
parameter (n_eff and rhat) are provided in the fit summaries, but can often obscure some of the
nuanced details of model fitting.

50 TL_stan

Value

A list of objects:

• Effects_df; dataframe with estimates of the effect size (change in logit(fn)) comparing each
experimental condition to the reference sample for each feature. This dataframe also includes
p-values obtained from a moderated t-test. The columns of this dataframe are:

– Feature_ID; Numerical ID of feature
– Exp_ID; Numerical ID for experimental condition (Exp_ID from metadf)
– L2FC_kdeg; L2FC(kdeg) posterior mean
– L2FC_kd_sd; L2FC(kdeg) posterior sd
– effect; identical to L2FC_kdeg (kept for symmetry with MLE fit output)
– se; identical to L2FC_kd_sd (kept for symmetry with MLE fit output)
– XF; Feature name
– pval; p value obtained from effect and se + z-test
– padj; p value adjusted for multiple testing using Benjamini-Hochberg procedure

• Kdeg_df; dataframe with estimates of the kdeg (RNA degradation rate constant) for each
feature, averaged across replicate data. The columns of this dataframe are:

– Feature_ID; Numerical ID of feature
– Exp_ID; Numerical ID for experimental condition
– kdeg; Degradation rate constant posterior mean
– kdeg_sd; Degradation rate constant posterior standard deviation
– log_kdeg; Log of degradation rate constant posterior mean (as of version 1.0.0)
– log_kdeg_sd; Log of degradation rate constant posterior standard deviation (as of version

1.0.0)
– XF; Original feature name

• Fn_Estimates; dataframe with estimates of the logit(fraction new) for each feature in each
replicate. The columns of this dataframe are:

– Feature_ID; Numerical ID for feature
– Exp_ID; Numerical ID for experimental condition (Exp_ID from metadf)
– Replicate; Numerical ID for replicate
– logit_fn; Logit(fraction new) posterior mean
– logit_fn_se; Logit(fraction new) posterior standard deviation
– sample; Sample name
– XF; Original feature name

• Fit_Summary; only outputted if keep_fit == FALSE. Summary of ’Stan’ fit object with each
row corresponding to a particular parameter. All posterior point descriptions are descriptions
of the marginal posterior distribution for the parameter in that row. For example, the posterior
mean is the average value for the parameter when averaging over all other parameter values.
The columns of this dataframe are:

– mean; Posterior mean for the parameter given by the row name
– se_mean; Standard error of the posterior mean; essentially how confident the model is

that what it estimates to be the posterior mean is what the posterior mean actually is. This
will depend on the number of chains run on the number of iterations each chain is run for.

validate_bakRData 51

– sd; Posterior standard deviation
– 2.5%; 2.5th percentile of the posterior distribution. 2.5% of the posterior mass is below

this point
– 25%; 25th percentile of the posterior distribution
– 50%; 50th percentile of the posterior distribution
– 75%; 75th percentile of the posterior distribution
– 97.5%; 97.5th percentile of the posterior distribution
– n_eff; Effective sample size. The larger this is the better, though it should preferably be

around the total number of iterations (iter x chains). Small values of this could represent
poor model convergence

– Rhat; Describes how well separate Markov chains mixed. This is preferably as close to 1
as possible, and values higher than 1 could represent poor model convergence

• Stan_Fit; only outputted if keep_fit == TRUE. This is the full ’Stan’ fit object, an R6 object
of class stanfit

• Mutation_Rates; data frame with information about mutation rate estimates. Has the same
columns as Fit_Summary. Each row corresponds to either a background mutation rate (log_lambda_o)
or an s4U induced mutation rate (log_lambda_n), denoted in the parameter column. The
bracketed portion of the parameter name will contain two numbers. The first corresponds to
the Exp_ID and the second corresponds to the Replicate_ID. For example, if the parameter
name is log_lambda_o[1,2] then that row corresponds to the background mutation rate in the
second replicate of experimental condition one. A final point to mention is that the estimates
are on a log(avg. # of mutations) scale. So a log_lambda_n of 1 means that on average,
there are an estimated 2.72 (exp(1)) mutations in reads from new RNA (i.e., RNA synthesized
during s4U labeling).

validate_bakRData bakR Data object validator

Description

This functions ensures that input for bakRData object construction is valid

Usage

validate_bakRData(obj)

Arguments

obj An object of class bakRData

52 VisualizeDropout

validate_bakRFnData bakRFnData object validator

Description

This functions ensures that input for bakRFnData object construction is valid

Usage

validate_bakRFnData(obj)

Arguments

obj An object of class bakRFnData

VisualizeDropout Visualize dropout

Description

VisualizeDropout fits dropout model with QuantifyDropout, reports the fit results, and then
generates a ggplot object showing the data used to infer the fit as well as the fitted nonlinear trend.

Usage

VisualizeDropout(obj, keep_data = FALSE, no_message = FALSE)

Arguments

obj bakRFit or bakRFnFit object

keep_data Logical; if TRUE, will return data used to make plots along with the plots them-
selves

no_message Logical; if TRUE, will not output message regarding estimated rates of dropout
in each sample

Value

If keep_data is FALSE, then a list of ggplot objects are returned, one for each +s4U sample. The
plots show the relationship between a feature’s fraction new and the difference between its +s4U
and -s4U read coverage. Nonlinear-least squares fit is plotted on top of points as a blue line. If
keep_data is TRUE, then the data used to make the plots is returned in addition to the list of plots.

VisualizeDropout 53

Examples

Simulate data for 500 genes and 2 replicates with 40% dropout
sim <- Simulate_relative_bakRData(500, 100000, nreps = 2, p_do = 0.4)

Fit data with fast implementation
Fit <- bakRFit(sim$bakRData)

Quantify dropout
DO_plots <- VisualizeDropout(Fit)

Index

∗ GS_table
GS_table, 30

∗ cB_small
cB_small, 14

∗ fns
fns, 26

∗ metadf
metadf, 32

avg_and_regularize, 3

bakR (bakR-package), 3
bakR-package, 3
bakRData, 6
bakRFit, 7
bakRFnData, 11

cB_small, 14
cBprocess, 11
CorrectDropout, 15

DissectMechanism, 17

fast_analysis, 18
fn_process, 27
FnPCA, 24
FnPCA2, 25
fns, 26

GS_table, 30
GSprocessing, 29

Heatmap_kdeg, 31

metadf, 32

new_bakRData, 32
new_bakRFnData, 33
NSSHeat, 33

plotMA, 34

plotVolcano, 35

QC_checks, 36
QuantifyDropout, 37

reliableFeatures, 38

Simulate_bakRData, 40
Simulate_relative_bakRData, 44

TL_stan, 48

validate_bakRData, 51
validate_bakRFnData, 52
VisualizeDropout, 52

54

	bakR-package
	avg_and_regularize
	bakRData
	bakRFit
	bakRFnData
	cBprocess
	cB_small
	CorrectDropout
	DissectMechanism
	fast_analysis
	FnPCA
	FnPCA2
	fns
	fn_process
	GSprocessing
	GS_table
	Heatmap_kdeg
	metadf
	new_bakRData
	new_bakRFnData
	NSSHeat
	plotMA
	plotVolcano
	QC_checks
	QuantifyDropout
	reliableFeatures
	Simulate_bakRData
	Simulate_relative_bakRData
	TL_stan
	validate_bakRData
	validate_bakRFnData
	VisualizeDropout
	Index

